Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Meyer
1
68 kgBrändle
2
80 kgBoeckmans
5
76 kgNerz
7
67 kgBobridge
8
65 kgKluge
9
83 kgHoward
10
72 kgWestmattelmann
12
75 kgO'Shea
17
76 kgPfingsten
19
69 kgGeschke
20
64 kgJanorschke
23
78 kgChaigneau
40
80 kgKreder
43
70 kgMatzka
48
69 kgSeubert
50
73 kgLindeman
71
69 kgMoberg Jørgensen
73
73 kg
1
68 kgBrändle
2
80 kgBoeckmans
5
76 kgNerz
7
67 kgBobridge
8
65 kgKluge
9
83 kgHoward
10
72 kgWestmattelmann
12
75 kgO'Shea
17
76 kgPfingsten
19
69 kgGeschke
20
64 kgJanorschke
23
78 kgChaigneau
40
80 kgKreder
43
70 kgMatzka
48
69 kgSeubert
50
73 kgLindeman
71
69 kgMoberg Jørgensen
73
73 kg
Weight (KG) →
Result →
83
64
1
73
# | Rider | Weight (KG) |
---|---|---|
1 | MEYER Travis | 68 |
2 | BRÄNDLE Matthias | 80 |
5 | BOECKMANS Kris | 76 |
7 | NERZ Dominik | 67 |
8 | BOBRIDGE Jack | 65 |
9 | KLUGE Roger | 83 |
10 | HOWARD Leigh | 72 |
12 | WESTMATTELMANN Daniel | 75 |
17 | O'SHEA Glenn | 76 |
19 | PFINGSTEN Christoph | 69 |
20 | GESCHKE Simon | 64 |
23 | JANORSCHKE Grischa | 78 |
40 | CHAIGNEAU Robin | 80 |
43 | KREDER Raymond | 70 |
48 | MATZKA Ralf | 69 |
50 | SEUBERT Timon | 73 |
71 | LINDEMAN Bert-Jan | 69 |
73 | MOBERG JØRGENSEN Christian | 73 |