Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 22
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Gaudu
1
53 kgKnox
2
58 kgMartínez
3
63 kgEg
4
60 kgCastrillo
5
65 kgGregaard
6
66 kgStorer
7
63 kgStork
8
65 kgThomas
9
68 kgVingegaard
10
58 kgEvenepoel
11
61 kgStrakhov
12
70 kgBarta
13
61 kgGanna
14
83 kgKämna
15
65 kgVanhoucke
16
65 kgScotson
17
77 kgRiabushenko
18
61 kgMoschetti
19
73 kgIversen
20
77 kg
1
53 kgKnox
2
58 kgMartínez
3
63 kgEg
4
60 kgCastrillo
5
65 kgGregaard
6
66 kgStorer
7
63 kgStork
8
65 kgThomas
9
68 kgVingegaard
10
58 kgEvenepoel
11
61 kgStrakhov
12
70 kgBarta
13
61 kgGanna
14
83 kgKämna
15
65 kgVanhoucke
16
65 kgScotson
17
77 kgRiabushenko
18
61 kgMoschetti
19
73 kgIversen
20
77 kg
Weight (KG) →
Result →
83
53
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | GAUDU David | 53 |
2 | KNOX James | 58 |
3 | MARTÍNEZ Daniel Felipe | 63 |
4 | EG Niklas | 60 |
5 | CASTRILLO Jaime | 65 |
6 | GREGAARD Jonas | 66 |
7 | STORER Michael | 63 |
8 | STORK Florian | 65 |
9 | THOMAS Benjamin | 68 |
10 | VINGEGAARD Jonas | 58 |
11 | EVENEPOEL Remco | 61 |
12 | STRAKHOV Dmitry | 70 |
13 | BARTA Will | 61 |
14 | GANNA Filippo | 83 |
15 | KÄMNA Lennard | 65 |
16 | VANHOUCKE Harm | 65 |
17 | SCOTSON Callum | 77 |
18 | RIABUSHENKO Alexandr | 61 |
19 | MOSCHETTI Matteo | 73 |
20 | IVERSEN Rasmus Byriel | 77 |