Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 29
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
van der Poel
1
75 kgGesbert
2
63 kgKurianov
3
74 kgMertz
4
70 kgDe Plus
5
67 kgRochas
6
51 kgRivière
7
63 kgVincent
10
62 kgCherkasov
14
68 kgLafay
15
65 kgLeplingard
17
68 kgBudding
19
74 kgVan Gompel
20
70 kgRusso
21
74 kgTouzé
22
69 kgCras
26
65 kgGodon
29
74 kgSellier
33
68 kgParet-Peintre
34
64 kgBonnamour
47
70 kgPicoux
50
71 kgPeeters
60
69 kgReynaerts
66
70 kg
1
75 kgGesbert
2
63 kgKurianov
3
74 kgMertz
4
70 kgDe Plus
5
67 kgRochas
6
51 kgRivière
7
63 kgVincent
10
62 kgCherkasov
14
68 kgLafay
15
65 kgLeplingard
17
68 kgBudding
19
74 kgVan Gompel
20
70 kgRusso
21
74 kgTouzé
22
69 kgCras
26
65 kgGodon
29
74 kgSellier
33
68 kgParet-Peintre
34
64 kgBonnamour
47
70 kgPicoux
50
71 kgPeeters
60
69 kgReynaerts
66
70 kg
Weight (KG) →
Result →
75
51
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER POEL Mathieu | 75 |
2 | GESBERT Élie | 63 |
3 | KURIANOV Stepan | 74 |
4 | MERTZ Rémy | 70 |
5 | DE PLUS Laurens | 67 |
6 | ROCHAS Rémy | 51 |
7 | RIVIÈRE David | 63 |
10 | VINCENT Léo | 62 |
14 | CHERKASOV Nikolay | 68 |
15 | LAFAY Victor | 65 |
17 | LEPLINGARD Antoine | 68 |
19 | BUDDING Martijn | 74 |
20 | VAN GOMPEL Mathias | 70 |
21 | RUSSO Clément | 74 |
22 | TOUZÉ Damien | 69 |
26 | CRAS Steff | 65 |
29 | GODON Dorian | 74 |
33 | SELLIER Simon | 68 |
34 | PARET-PEINTRE Aurélien | 64 |
47 | BONNAMOUR Franck | 70 |
50 | PICOUX Maximilien | 71 |
60 | PEETERS Yannick | 69 |
66 | REYNAERTS Wim | 70 |