Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Celano
1
65 kgStetina
3
63 kgBusche
5
69 kgSkujiņš
6
70 kgMcCabe
8
72 kgWilliams
9
73 kgMancebo
10
64 kgPutt
11
75 kgArredondo
12
58 kgPate
13
73 kgJones
14
64 kgCraddock
18
69 kgMollema
19
64 kgMurphy
20
81 kgDuchesne
23
75 kgRast
24
80 kgDal-Cin
25
77 kgHowes
27
61 kg
1
65 kgStetina
3
63 kgBusche
5
69 kgSkujiņš
6
70 kgMcCabe
8
72 kgWilliams
9
73 kgMancebo
10
64 kgPutt
11
75 kgArredondo
12
58 kgPate
13
73 kgJones
14
64 kgCraddock
18
69 kgMollema
19
64 kgMurphy
20
81 kgDuchesne
23
75 kgRast
24
80 kgDal-Cin
25
77 kgHowes
27
61 kg
Weight (KG) →
Result →
81
58
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | CELANO Danilo | 65 |
3 | STETINA Peter | 63 |
5 | BUSCHE Matthew | 69 |
6 | SKUJIŅŠ Toms | 70 |
8 | MCCABE Travis | 72 |
9 | WILLIAMS Tyler | 73 |
10 | MANCEBO Francisco | 64 |
11 | PUTT Tanner | 75 |
12 | ARREDONDO Julián David | 58 |
13 | PATE Danny | 73 |
14 | JONES Chris | 64 |
18 | CRADDOCK Lawson | 69 |
19 | MOLLEMA Bauke | 64 |
20 | MURPHY John | 81 |
23 | DUCHESNE Antoine | 75 |
24 | RAST Grégory | 80 |
25 | DAL-CIN Matteo | 77 |
27 | HOWES Alex | 61 |