Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Marin
3
67 kgKvasina
4
72 kgZoidl
6
63 kgde la Parte
8
64 kgTamouridis
9
70 kgEibegger
10
68 kgNechita
11
71 kgKusztor
12
61 kgVasylyuk
15
65 kgGerganov
16
60 kgHristov
17
57 kgBommel
21
75 kgde Jonge
23
65 kgČanecký
24
72 kgTopchanyuk
29
65 kgGyurov
31
75 kgKers
33
71 kgJovanović
34
60 kgLovassy
40
71 kgCholakov
53
66 kgMalaguti
54
67 kgRabitsch
57
69 kgSchiewer
60
70 kg
3
67 kgKvasina
4
72 kgZoidl
6
63 kgde la Parte
8
64 kgTamouridis
9
70 kgEibegger
10
68 kgNechita
11
71 kgKusztor
12
61 kgVasylyuk
15
65 kgGerganov
16
60 kgHristov
17
57 kgBommel
21
75 kgde Jonge
23
65 kgČanecký
24
72 kgTopchanyuk
29
65 kgGyurov
31
75 kgKers
33
71 kgJovanović
34
60 kgLovassy
40
71 kgCholakov
53
66 kgMalaguti
54
67 kgRabitsch
57
69 kgSchiewer
60
70 kg
Weight (KG) →
Result →
75
57
3
60
# | Rider | Weight (KG) |
---|---|---|
3 | MARIN Matej | 67 |
4 | KVASINA Matija | 72 |
6 | ZOIDL Riccardo | 63 |
8 | DE LA PARTE Víctor | 64 |
9 | TAMOURIDIS Ioannis | 70 |
10 | EIBEGGER Markus | 68 |
11 | NECHITA Andrei | 71 |
12 | KUSZTOR Péter | 61 |
15 | VASYLYUK Andriy | 65 |
16 | GERGANOV Evgeni | 60 |
17 | HRISTOV Stefan Koychev | 57 |
21 | BOMMEL Henning | 75 |
23 | DE JONGE Maarten | 65 |
24 | ČANECKÝ Marek | 72 |
29 | TOPCHANYUK Artem | 65 |
31 | GYUROV Spas | 75 |
33 | KERS Koos Jeroen | 71 |
34 | JOVANOVIĆ Nebojša | 60 |
40 | LOVASSY Krisztián | 71 |
53 | CHOLAKOV Stanimir | 66 |
54 | MALAGUTI Alessandro | 67 |
57 | RABITSCH Stephan | 69 |
60 | SCHIEWER Franz | 70 |