Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.8 * weight + 237
This means that on average for every extra kilogram weight a rider loses -2.8 positions in the result.
Shpilevsky
1
78 kgKaňkovský
2
83 kgKemps
3
73 kgJanorschke
4
78 kgHanson
7
74 kgMetlushenko
9
82 kgKadlec
10
70 kgWang
12
70 kgWu
14
68 kgWong
15
65 kgOjavee
18
80 kgPeterson
40
67 kgMcCann
44
73 kgChan
48
70 kgAlizadeh
56
62 kgAskari
62
73 kgWilliams
63
75 kgMizbani
67
67 kgWacker
68
65 kgWalker
72
63 kgPidgornyy
73
72 kgKhalmuratov
77
68 kgLiu
78
67 kg
1
78 kgKaňkovský
2
83 kgKemps
3
73 kgJanorschke
4
78 kgHanson
7
74 kgMetlushenko
9
82 kgKadlec
10
70 kgWang
12
70 kgWu
14
68 kgWong
15
65 kgOjavee
18
80 kgPeterson
40
67 kgMcCann
44
73 kgChan
48
70 kgAlizadeh
56
62 kgAskari
62
73 kgWilliams
63
75 kgMizbani
67
67 kgWacker
68
65 kgWalker
72
63 kgPidgornyy
73
72 kgKhalmuratov
77
68 kgLiu
78
67 kg
Weight (KG) →
Result →
83
62
1
78
# | Rider | Weight (KG) |
---|---|---|
1 | SHPILEVSKY Boris | 78 |
2 | KAŇKOVSKÝ Alois | 83 |
3 | KEMPS Aaron | 73 |
4 | JANORSCHKE Grischa | 78 |
7 | HANSON Ken | 74 |
9 | METLUSHENKO Yuri | 82 |
10 | KADLEC Milan | 70 |
12 | WANG Meiyin | 70 |
14 | WU Kin San | 68 |
15 | WONG Kam-Po | 65 |
18 | OJAVEE Mart | 80 |
40 | PETERSON Cameron | 67 |
44 | MCCANN David | 73 |
48 | CHAN Chun Hing | 70 |
56 | ALIZADEH Hossein | 62 |
62 | ASKARI Hossein | 73 |
63 | WILLIAMS Christopher | 75 |
67 | MIZBANI Ghader | 67 |
68 | WACKER Eugen | 65 |
72 | WALKER Johnnie | 63 |
73 | PIDGORNYY Ruslan | 72 |
77 | KHALMURATOV Muradjan | 68 |
78 | LIU Biao | 67 |