Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -26.8 * weight + 2419
This means that on average for every extra kilogram weight a rider loses -26.8 positions in the result.
Sciandri
1
75 kgBugno
2
68 kgBerzin
3
64 kgBartoli
5
65 kgCenghialta
7
73 kgTonkov
8
70 kgImboden
9
70 kgChiappucci
990
67 kgBourguignon
990
72 kgGotti
990
65 kgShefer
990
68 kgPantani
990
58 kgPiccoli
990
64 kgCasagrande
990
64 kgZanini
990
80 kgRebellin
990
63 kgArgentin
990
66 kgBonča
990
63 kg
1
75 kgBugno
2
68 kgBerzin
3
64 kgBartoli
5
65 kgCenghialta
7
73 kgTonkov
8
70 kgImboden
9
70 kgChiappucci
990
67 kgBourguignon
990
72 kgGotti
990
65 kgShefer
990
68 kgPantani
990
58 kgPiccoli
990
64 kgCasagrande
990
64 kgZanini
990
80 kgRebellin
990
63 kgArgentin
990
66 kgBonča
990
63 kg
Weight (KG) →
Result →
80
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | SCIANDRI Maximilian | 75 |
2 | BUGNO Gianni | 68 |
3 | BERZIN Evgeni | 64 |
5 | BARTOLI Michele | 65 |
7 | CENGHIALTA Bruno | 73 |
8 | TONKOV Pavel | 70 |
9 | IMBODEN Heinz | 70 |
990 | CHIAPPUCCI Claudio | 67 |
990 | BOURGUIGNON Thierry | 72 |
990 | GOTTI Ivan | 65 |
990 | SHEFER Alexandre | 68 |
990 | PANTANI Marco | 58 |
990 | PICCOLI Mariano | 64 |
990 | CASAGRANDE Francesco | 64 |
990 | ZANINI Stefano | 80 |
990 | REBELLIN Davide | 63 |
990 | ARGENTIN Moreno | 66 |
990 | BONČA Valter | 63 |