Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Craddock
2
69 kgLe Gac
3
70 kgBosman
5
68 kgVandenbogaerde
9
77 kgDe Rooze
12
62 kgDe Buyst
20
72 kgBoons
21
85 kgPeelaers
23
75 kgPacher
24
62 kgvan Ginneken
25
72 kgCam
26
61 kgYssaad
27
69 kgCapiot
28
69 kgBrusselman
31
76 kgFolsach
33
81 kgKerf
36
71 kgThevenot
57
69 kgVermeulen
69
64 kgMaes
96
72 kg
2
69 kgLe Gac
3
70 kgBosman
5
68 kgVandenbogaerde
9
77 kgDe Rooze
12
62 kgDe Buyst
20
72 kgBoons
21
85 kgPeelaers
23
75 kgPacher
24
62 kgvan Ginneken
25
72 kgCam
26
61 kgYssaad
27
69 kgCapiot
28
69 kgBrusselman
31
76 kgFolsach
33
81 kgKerf
36
71 kgThevenot
57
69 kgVermeulen
69
64 kgMaes
96
72 kg
Weight (KG) →
Result →
85
61
2
96
# | Rider | Weight (KG) |
---|---|---|
2 | CRADDOCK Lawson | 69 |
3 | LE GAC Olivier | 70 |
5 | BOSMAN Gert-Jan | 68 |
9 | VANDENBOGAERDE Jens | 77 |
12 | DE ROOZE Niels | 62 |
20 | DE BUYST Jasper | 72 |
21 | BOONS Ruben | 85 |
23 | PEELAERS Jeff | 75 |
24 | PACHER Quentin | 62 |
25 | VAN GINNEKEN Sjoerd | 72 |
26 | CAM Maxime | 61 |
27 | YSSAAD Yannis | 69 |
28 | CAPIOT Amaury | 69 |
31 | BRUSSELMAN Twan | 76 |
33 | FOLSACH Casper | 81 |
36 | KERF Jerome | 71 |
57 | THEVENOT Guillaume | 69 |
69 | VERMEULEN Emiel | 64 |
96 | MAES Alexander | 72 |