Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Moreno
1
59 kgČerný
3
75 kgGouault
4
61 kgAntomarchi
5
70 kgOurselin
6
70 kgOliveira
8
68 kgJanssens
9
74 kgTaaramäe
10
68 kgHarper
11
67 kgGrellier
12
65 kgHuys
14
61 kgEibegger
15
68 kgDieleman
18
78 kgBarta
19
61 kgHagen
20
65 kgVanhoucke
23
65 kgZoidl
24
63 kgVan Poucke
25
68 kg
1
59 kgČerný
3
75 kgGouault
4
61 kgAntomarchi
5
70 kgOurselin
6
70 kgOliveira
8
68 kgJanssens
9
74 kgTaaramäe
10
68 kgHarper
11
67 kgGrellier
12
65 kgHuys
14
61 kgEibegger
15
68 kgDieleman
18
78 kgBarta
19
61 kgHagen
20
65 kgVanhoucke
23
65 kgZoidl
24
63 kgVan Poucke
25
68 kg
Weight (KG) →
Result →
78
59
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | MORENO Adrià | 59 |
3 | ČERNÝ Josef | 75 |
4 | GOUAULT Pierre | 61 |
5 | ANTOMARCHI Julien | 70 |
6 | OURSELIN Paul | 70 |
8 | OLIVEIRA Ivo | 68 |
9 | JANSSENS Jimmy | 74 |
10 | TAARAMÄE Rein | 68 |
11 | HARPER Chris | 67 |
12 | GRELLIER Fabien | 65 |
14 | HUYS Laurens | 61 |
15 | EIBEGGER Markus | 68 |
18 | DIELEMAN Michiel | 78 |
19 | BARTA Will | 61 |
20 | HAGEN Carl Fredrik | 65 |
23 | VANHOUCKE Harm | 65 |
24 | ZOIDL Riccardo | 63 |
25 | VAN POUCKE Aaron | 68 |