Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Buts
1
68 kgVasylyuk
5
65 kgBouglas
9
71 kgNikolaev
10
66 kgTatarinov
11
67 kgArslanov
16
63 kgGradek
17
83 kgSerov
18
77 kgKrivtsov
19
72 kgErshov
20
70 kgGottfried
24
60 kgBogdanovičs
26
68 kgBernas
28
77 kgJanorschke
34
78 kgSapa
36
82 kgAhiyevich
47
70 kgKatyrin
51
65 kgZemlyakov
56
70 kgMamykin
88
62 kg
1
68 kgVasylyuk
5
65 kgBouglas
9
71 kgNikolaev
10
66 kgTatarinov
11
67 kgArslanov
16
63 kgGradek
17
83 kgSerov
18
77 kgKrivtsov
19
72 kgErshov
20
70 kgGottfried
24
60 kgBogdanovičs
26
68 kgBernas
28
77 kgJanorschke
34
78 kgSapa
36
82 kgAhiyevich
47
70 kgKatyrin
51
65 kgZemlyakov
56
70 kgMamykin
88
62 kg
Weight (KG) →
Result →
83
60
1
88
# | Rider | Weight (KG) |
---|---|---|
1 | BUTS Vitaliy | 68 |
5 | VASYLYUK Andriy | 65 |
9 | BOUGLAS Georgios | 71 |
10 | NIKOLAEV Sergey | 66 |
11 | TATARINOV Gennadiy | 67 |
16 | ARSLANOV Ildar | 63 |
17 | GRADEK Kamil | 83 |
18 | SEROV Alexander | 77 |
19 | KRIVTSOV Dmytro | 72 |
20 | ERSHOV Artur | 70 |
24 | GOTTFRIED Alexander | 60 |
26 | BOGDANOVIČS Māris | 68 |
28 | BERNAS Paweł | 77 |
34 | JANORSCHKE Grischa | 78 |
36 | SAPA Marcin | 82 |
47 | AHIYEVICH Aleh | 70 |
51 | KATYRIN Roman | 65 |
56 | ZEMLYAKOV Oleg | 70 |
88 | MAMYKIN Matvey | 62 |