Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Hamilton
1
71 kgTietema
2
74 kgEenkhoorn
3
72 kgHonoré
4
68 kgHindley
5
60 kgHagen
6
65 kgKnox
8
58 kgStorer
9
63 kgRekita
10
70 kgVermeersch
11
68 kgSchmidt
12
63 kgStannard
13
74 kgSpengler
14
78 kgCras
15
65 kgKasperkiewicz
16
71 kgKanter
17
68 kgDavies
18
66 kgPlanckaert
19
69 kgSosa
20
52 kgvan den Berg
22
78 kgRutsch
26
82 kg
1
71 kgTietema
2
74 kgEenkhoorn
3
72 kgHonoré
4
68 kgHindley
5
60 kgHagen
6
65 kgKnox
8
58 kgStorer
9
63 kgRekita
10
70 kgVermeersch
11
68 kgSchmidt
12
63 kgStannard
13
74 kgSpengler
14
78 kgCras
15
65 kgKasperkiewicz
16
71 kgKanter
17
68 kgDavies
18
66 kgPlanckaert
19
69 kgSosa
20
52 kgvan den Berg
22
78 kgRutsch
26
82 kg
Weight (KG) →
Result →
82
52
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | HAMILTON Lucas | 71 |
2 | TIETEMA Bas | 74 |
3 | EENKHOORN Pascal | 72 |
4 | HONORÉ Mikkel Frølich | 68 |
5 | HINDLEY Jai | 60 |
6 | HAGEN Carl Fredrik | 65 |
8 | KNOX James | 58 |
9 | STORER Michael | 63 |
10 | REKITA Szymon | 70 |
11 | VERMEERSCH Gianni | 68 |
12 | SCHMIDT Fabien | 63 |
13 | STANNARD Robert | 74 |
14 | SPENGLER Lukas | 78 |
15 | CRAS Steff | 65 |
16 | KASPERKIEWICZ Przemysław | 71 |
17 | KANTER Max | 68 |
18 | DAVIES Scott | 66 |
19 | PLANCKAERT Emiel | 69 |
20 | SOSA Iván Ramiro | 52 |
22 | VAN DEN BERG Julius | 78 |
26 | RUTSCH Jonas | 82 |