Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Boivin
2
78 kgTxurruka
3
58 kgBilbao
4
60 kgGuerreiro
5
65 kgSkujiņš
6
70 kgGrijalba
7
61 kgCarthy
8
69 kgSmith
9
67 kgPrades
10
63 kgDaniel
13
64 kgSwirbul
14
65 kgArdila
15
58 kgBell
16
75 kgChalapud
17
63 kgBenito
18
67 kgMilán
20
67 kgOram
21
68 kgRoth
23
70 kgBarbero
24
66 kgPerry
25
71 kgOronte
26
65 kgCataford
27
70 kgMorton
28
62 kg
2
78 kgTxurruka
3
58 kgBilbao
4
60 kgGuerreiro
5
65 kgSkujiņš
6
70 kgGrijalba
7
61 kgCarthy
8
69 kgSmith
9
67 kgPrades
10
63 kgDaniel
13
64 kgSwirbul
14
65 kgArdila
15
58 kgBell
16
75 kgChalapud
17
63 kgBenito
18
67 kgMilán
20
67 kgOram
21
68 kgRoth
23
70 kgBarbero
24
66 kgPerry
25
71 kgOronte
26
65 kgCataford
27
70 kgMorton
28
62 kg
Weight (KG) →
Result →
78
58
2
28
# | Rider | Weight (KG) |
---|---|---|
2 | BOIVIN Guillaume | 78 |
3 | TXURRUKA Amets | 58 |
4 | BILBAO Pello | 60 |
5 | GUERREIRO Ruben | 65 |
6 | SKUJIŅŠ Toms | 70 |
7 | GRIJALBA Fernando | 61 |
8 | CARTHY Hugh | 69 |
9 | SMITH Dion | 67 |
10 | PRADES Eduard | 63 |
13 | DANIEL Gregory | 64 |
14 | SWIRBUL Keegan | 65 |
15 | ARDILA Mauricio Alberto | 58 |
16 | BELL Zach | 75 |
17 | CHALAPUD Robinson | 63 |
18 | BENITO Miguel Ángel | 67 |
20 | MILÁN Diego | 67 |
21 | ORAM James | 68 |
23 | ROTH Ryan | 70 |
24 | BARBERO Carlos | 66 |
25 | PERRY Benjamin | 71 |
26 | ORONTE Emerson | 65 |
27 | CATAFORD Alexander | 70 |
28 | MORTON Lachlan | 62 |